
Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 159

Implementation and Analysis on FIFO using FPGA
Dr. Y L Ajay Kumar1, G.Swathi2,A.Anil Kumar 3, M.Jhoshna4, M.Karthik5, m.Jagadesh6

1Professor and Head of ECE, Department of ECE, ALTS, Anantapuramu,
2,3,4,5,6 UG Scholar, Dept of ECE, ALTS, Anantapuramu.

Article Info

Received: 22-02-2025 Revised: 22 -03-2025 Accepted: 08-04-2025 Published:19/04/2025

ABSTRACT

Several regions across India are currently experiencing significant energy shortages. This study

investigates the implementation of an optimized First-In-First- Out (FIFO) mechanism using Field-

Programmable Gate Array (FPGA) technology to enhance environmentally sustainable

transmission systems. FIFO, which manages and processes items or data in the order they are

received, mirrors the intuitive operation of reallife queues and lines. The proposed design employs

the Genesys board as the FPGA hardware, which offers high performance, Gigabit Ethernet

connectivity, and design flexibility, making it suitable for highly complex applications. The

integration of this optimized FIFO mechanism on the Genesys FPGA board demonstrates potential

improvements in the efficiency and sustainability of energy transmission systems, addressing

current energy shortfalls effectively.

Key Terms— Xilinx,FPGA,Energy effieciency,Vivado,First in First out (FIFO).

I. INTRODUCTION

FPGAs are semiconductor devices that are organised

in the form of a matrix of configurable logic blocks

(CLBs) that are linked together by means of

programmable interconnects. FPGAs are widely used in

various industries and applications, ranging from

electronics and telecommunications to aerospace and

automotive sectors [1]. At their core, FPGAs are made

up of a network of programmable interconnects that

allow the internal blocks to communicate with each

other. These logic blocks can be configured to

implement different logic functions, such as AND, OR,

NOT, XOR, and more complex functions. Additionally,

FPGA devices often include other specialized

resources, such as memory blocks, digital signal

processing (DSP) blocks, and circuitry for the

management of clocks [2]. The FPGA is configured

using hardware descriptive languages like VHDL and

Verilog. This language is then compiled and synthesized

into a configuration bit file

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 160

that specifies how the logic blocks and interconnects

should be set up to achieve the desired functionality.

That bit file is loaded onto the FPGA device, effectively

"programming" it to perform the specified logic

operations [3]. One of the key advantages of FPGAs is

their reconfigurability. Unlike traditional Application-

Specific Integrated Circuits (ASICs) that are designed

for a specific purpose and cannot be changed after

manufacturing, FPGAs can be reprogrammed to adapt to

different tasks or to fix errors or updates. This flexibility

makes FPGA suitable for prototyping, testing, and even

for use in products where design changes might be

necessary over time[4]. FPGAs find applications in a

wide range of fields, including: Digital Signal

Processing: FPGAs can accelerate complex

mathematical computations, making them useful in

applications like image and audio processing.

Communication Systems: FPGAs are used to implement

communication protocols, encoding/decoding, and

modulation/demodulation functions. Embedded

Systems:

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 161

FPGAs can be integrated into embedded systems to

provide hardware acceleration for specific tasks,

reducing the load on the main processor. Aerospace

and Défense: FPGAs are used in radar systems,

satellite communication, avionics, and more due to

their ability to handle real-time processing and adapt

to changing requirements. Industrial Automation:

FPGAs are used in industrial control systems for real-

time monitoring and control of machinery and

processes[1, 5]. Cryptocurrency Mining: FPGAs can

be used to accelerate certain cryptographic calculations

in mining operations. Prototyping: FPGAs are often

used to prototype hardware designs before committing

to manufacturing ASICs. Despite their versatility,

FPGAs do have some limitations, such as lower

performance compared to custom-designed ASICs for

specific tasks and higher power consumption due to

their general- purpose nature. However, advancements

in FPGA technology continue to improve their

performance, power efficiency, and capabilities.

In computer science, a FIFO data structure is often

referred to as a queue. In a queue, the first item added

is the first one to be removed. For example, there is a

long queue of people waiting to purchase tickets at the

theatre. The individual who comes first will be given

the opportunity to purchase a ticket before everyone

else. In a similar manner, the item that is processed

first in a computer programme is the one that was

placed to the queue first.[6, 7]. In computer memory

management, a FIFO page replacement algorithm is

used to decide which page to remove from memory

when space is needed for a new page. The idea is to

replace the oldest page in memory, just like you would

replace the oldest item in a queue. In business and

accounting, FIFO is used to calculate the cost of goods

sold (COGS) and the value of inventory. According to the

FIFO principle, the items that were acquired or produced

first are assumed

to be sold or used first. This method can have an impact

on tax liabilities and financial reporting. In networking, a

FIFO buffer (First-In, First-Out buffer) is often used to

manage the flow of data packets. Data packets are stored

in the buffer in the order they arrive, and they are

processed and sent out in the same order[8, 9]. FIFOs are

also used in hardware design, especially in digital circuits.

These FIFOs are used to manage data flow between

different parts of a system, ensuring that data is handled in

the order it was received.

II. EXISTING METHOD

The existing system for FIFO (First In, First Out) is a

basic queueing mechanism commonly used in data storage

and transfer applications. FIFO ensures that data is

processed in the exact order it arrives, meaning that the

first data element added to the queue is also the first one to

be removed. This system operates through two main

operations: enqueue, which adds data to the queue, and

dequeue, which removes the data in the same order. FIFO

is widely used in scenarios where maintaining the order of

data is crucial, such as in communication systems, data

buffering, and task scheduling. The mechanism works by

maintaining two pointers—head and tail—where the head

pointer indicates the position from which data will be

removed, and the tail pointer marks where new data is

added. FIFO is commonly implemented using various data

structures like arrays or linked lists, but in hardware

implementations, such as those on FPGAs (Field-

Programmable Gate Arrays), the system is designed for

high-speed, parallel processing. FPGA implementations of

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 162

FIFO typically use Block RAM (BRAM) or other

memory elements, with specific logic circuits for

managing the enqueue and dequeue operations. These

operations rely on read and write pointers to ensure

the order of data flow, and the data

elements are stored in registers or memory banks. The

FPGA-based design allows the FIFO system to operate

at high speeds with low latency, making it ideal for

applications like data stream buffering in

communication systems, packet switching in networks,

or task scheduling in embedded systems. Furthermore,

FPGA implementations offer flexibility in optimizing

performance by adjusting the width of data paths, clock

speeds, and memory configurations. However, the

implementation of FIFO on FPGA requires careful

consideration of resource utilization, such as the

amount of available memory, logic blocks, and the

overall design complexity. As FPGA technology allows

for custom hardware designs, it provides the

opportunity to fine-tune the FIFO system for specific

use cases, enhancing its efficiency and performance

compared to traditional software-based

implementations. Through such an FPGA-based

implementation, the FIFO system becomes highly

scalable, with the potential for improved throughput,

reduced latency, and better integration into larger

hardware systems.

III. PROPOSED METHOD

Being a hardware solution, the FPGA-based FIFO

system has a number of benefits over conventional

software-based FIFO implementations, especially with

regard to speed, flexibility, and dependability. With the

help of a hardware platform called FPGA (Field-

Programmable Gate Array), users can create unique

circuits for particular applications, enabling high-

performance execution. The FIFO logic in your suggested

system is implemented by the FPGA, guaranteeing that

data is handled effectively and processed in the precise

order that it comes, without needless delays.

Using FPGA for FIFO has the primary benefit of

parallel processing. The architecture of FPGA allows it

to do several operations at once, in contrast to software

systems that usually process data in a sequential fashion.

FIFO processes are accelerated by this parallelism,

especially in applications that need real-time data

management, including packet switching or data

buffering. Additionally, FPGA has very low latency when

managing data flow in high-speed applications including

real-time embedded systems, communication systems,

and video processing.

Future Potential and Optimization: By utilizing newer

features like larger memory blocks and high-speed

interfaces, the suggested system can be further optimized

as FPGA technology advances. More sophisticated

processing methods, including caching to speed up

enqueue and dequeue processes or dynamic memory

allocation to maximize data storage and retrieval, can be

incorporated into the system in later iterations.

Furthermore, the FPGA FIFO system can be enhanced to

manage even larger data volumes while preserving its

effectiveness and low-latency performance when more

complicated applications emerge.

TABLE 1

Results for Proposed Logic

Circuit Static

Power(nW)

Dynamic

Power(fW)

Delay(ns)

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 163

NAND

gate

20.1 0.49 4.43

NOR

gate

11.6 1.30 4.42

Full

Adder

10.2 0.82 3.87

Power

FIGURE 1. Dynamic Power for Domino and Proposed Logic

Fig. power consumption results

Fig:Temparature results

IV. RESULTS

Title and Author Details

1) Level-1 Heading: A level-1 heading must be in Small

Caps, cantered and numbered using uppercase Roman

numerals. For example, see heading “III. Page Style” of

this document. The two level-1 headings which must

not be numbered are “Acknowledgment” and

“References”.

2) Level-2 Heading: A level-2 heading must be in Italic,

left-justified and numbered using an uppercase

alphabetic letter followed by a period. For example, see

heading “C. Section Headings” above.

3) Level-3 Heading: A level-3 heading must be indented,

in Italic and numbered with an Arabic numeral followed

by a right parenthesis. The level-3 heading must end

with a colon. The body of the level-3 section

immediately follows the level-3 heading in the same

paragraph. For example, this paragraph begins with a

level-3 heading.

A. Figures and Tables

Place figures and tables at the places where they needed.

All tables should be in Classic 1 format with borders to

heading and subheading columns. Large figures and

tables may span across both columns. To do so select

text above one column table and convert it in two

column and then select text below one column table and

convert it into two column. Figure captions should be

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 164

Title must be in 12 pt Times New Roman font. Author

name must be in 11 pt Regular font. Author affiliation

must be in 10 pt Italic. Email address must be in 9 pt

Courier Regular font.

Section Headings

No more than 3 levels of headings should be used. All

headings must be in 10pt font. Every word in a heading

must be capitalized except for short minor words as

listed in Section III-B.

below the figures; table heads should appear above the

tables. Insert figures and tables after they are cited in

the text. Use the abbreviation “Fig. 1”, even at the

beginning of a sentence. We suggest that you use

border for graphic (ideally 300 dpi), with all fonts

embedded) and try to reduce the size of figure to be

adjust in one column. Figure and Table Labels: Use 8

point Times New Roman for Figure and Table labels.

Use words rather than symbols or abbreviations when

writing Figure axis labels to avoid confusing the

reader.

Figure 1: A sample line graph using colours which contrast well

both on screen and on a black-and-white hardcopy

B. Page Numbers, Headers and Footers

Page numbers, headers and footers must not be used.

C. Links and Bookmarks

All hypertext links and section bookmarks will be

removed from papers during the processing of papers

for publication. If you need to refer to an Internet email

address or URL in your paper, you must type out the

address or URL fully in Regular font.

V. CONCLUSION

Using a Genesys board, FIFO is built in Vivado for

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 165

the purpose of this research. The Genesys board's

reliable and flexible environment makes it a good choice

for developing FPGA-based systems, making it a viable

alternative for a wide range of tasks BUFG, LUT, FF,

and IO is right. Individual % breakdown: 1%, 0.008%,

0.002%, and 3.13% This chip needs 2.189 W (total).

VI. REFERENCES

[1] S. Gandhare and B. Karthikeyan, "Survey on FPGA architecture

and recent applications," in 2019 International Conference on Vision

Towards Emerging Trends in Communication and Networking

(ViTECoN), 2019: IEEE, pp. 1-4.

[2] B. Zhang, R. Kannan, and V. Prasanna, "Boostgcn: A

frameworkfor optimizing gcn inference on fpga," in 2021 IEEE 29th

Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2021: IEEE, pp. 29-39.

[3] R. J. Hayne, "Translating the Instructional Processor from VHDL

to Verilog," in 2018 ASEE Annual Conference & Exposition, 2018.

[4] T. Wang, C. Wang, X. Zhou, and H. Chen, "An overview of

FPGA based deep learning accelerators: challenges and

opportunities," in 2019 IEEE 21st International Conference on High

Performance Computing and Communications; IEEE 17th

International Conference on Smart City; IEEE 5th International

Conference on Data Science and Systems (HPCC/SmartCity/DSS),

2019: IEEE, pp. 1674-1681.

[5] D. Koch, N. Dao, B. Healy, J. Yu, and A. Attwood, "FABulous:

An embedded FPGA framework," in The 2021 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2021,

pp. 45-56.

[6] G.-M. Sung, L.-F. Tung, H.-K. Wang, and J.-H. Lin, "USB

transceiver with a serial interface engine and FIFO queue for

efficient FPGA-to-FPGA communication," IEEE Access, vol. 8,

[7] V. Yadav, S. Kashyap, R. Pandey, and J. Madan, "Impact of

Doping Variation on the Performance of Sb 2 S 3 based Solar Cell

using Device Simulations," in 2023 IEEE Devices for Integrated

Circuit (DevIC), 2023: IEEE, pp. 52-55.

[8] S. Parker et al., "Impact of FIFO work arrangements on the

mental health and wellbeing of FIFO workers," 2018.

[9] A. Finkel and M. Praveen, "Verification of flat FIFO systems,"

Logical Methods in Computer Science, vol. 16, 2020.

Ijaiem.com/Mar 2025/ Volume 14/Issue 1/Article No-1/159-166

ISSN: 2319-4847

Page | 166

[10] A. C. Sembiring, J. Tampubolon, D. Sitanggang, and M. Turnip,

"Improvement of inventory system using first in first out (FIFO)

method," in Journal of Physics: Conference Series, 2019, vol. 1361,

no. 1: IOP Publishing, p. 012070.

[11] S. Rawat, S. Kashyap, J. Madan, and R. Pandey, "Numerical

Simulations of FASnI 3 based Solar Cell with the Variation of

Absorber Layer Thickness," in 2023 2nd Edition of IEEE Delhi

Section Flagship Conference (DELCON), 2023: IEEE, pp. 1-4.

[12] A. Singla, A. Kaur, and B. Pandey, "LVCMOS based energy

efficient solar charge sensor design on FPGA," in 2014 IEEE 6th

India International Conference on Power Electronics (IICPE), 2014:

IEEE, pp. 1-5.

[13] L. Shang, A. S. Kaviani, and K. Bathala, "Dynamic power

consumption in Virtex™-II FPGA family," in Proceedings of the

2002 ACM/SIGDA tenth international symposium on
Fieldprogrammable gate arrays, 2002, pp. 157-164.

[14] A. D. Brant, "Coarse and fine grain programmable overlay

architectures for FPGAs," University of British Columbia, 2013.

[15] F. Siddiqui et al., "FPGA-based processor acceleration for image

processing applications," Journal of Imaging, vol. 5, no. 1, p. 16,
2019.

[16] S. Das, U. Basu, R. Das, S. Saha, and A. Basu, "FPGA

Implementation of Asynchronous FIFO," in Proceedings of

International Conference on Industrial Instrumentation and Control:

ICI2C 2021, 2022: Springer, pp. 399-407.

[17] M. N. Emas, A. Baylis, and G. Stitt, "High-frequency
absorptionfifo pipelining for stratix 10 hyperflex," in 2018 IEEE 26th

Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2018: IEEE, pp. 97-100.

[18] S. Attia and V. Betz, "Toward Software-Like Debugging for

FPGAs via Checkpointing and Transaction-Based Co-Simulation,"
ACM Transactions on Reconfigurable Technology and Systems vol.

16, no. 2, pp. 1-24, 2023.

